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Abstract. Permutations of vertices can represent constrained spanning
trees for evolutionary search via a decoder based on Prim’s algorithm,
and random keys can represent permutations. Though we might expect
that random keys, with an additional level of indirection, would provide
inferior performance compared with permutations, a genetic algorithm
that encodes spanning trees with random keys is as effective as one whose
genotypes are permutations of vertices in comparisons on a variety of in-
stances of the bounded-diameter minimum spanning tree problem. These
results suggest that either coding may be used, at the programmer’s con-
venience, in evolutionary algorithms for problems involving constrained
spanning trees.

1 Introduction

Evolutionary algorithms often search spaces of permutations. However, when
simple positional evolutionary operators like k-point crossover and position-by-
position mutation are applied to permutations, the offspring they build are gene-
rally not permutations, so researchers must apply specialized operators. A large
number of these, particularly crossovers, have been developed [1].

Bean [2] proposed an indirect representation of permutations for evolutionary
search to which positional operators can be applied. He called this representation
random keys. In it, a genotype is a sequence of floating-point values, called keys
and usually falling between 0.0 and 1.0, associated with the items to be ordered.
Sorting the keys yields a permutation of the items; this is the permutation the
genotype represents. For example, if the integers 0 through 9 label ten items,
then the key sequence

(0.48, 0.66, 0.07, 0.33, 0.38, 0.72, 0.88, 0.54, 0.25, 0.42)

represents this permutation of those items: (2 8 3 4 9 0 7 1 5 6). Every se-
quence of keys represents a valid permutation, so simple operators like k-point
crossover and position-by-position mutation always yield valid genotypes.

Rothlauf [3, pp.180-182] has argued that random keys have good properties
for evolutionary search. Researchers have used them to represent permutations,
in turn representing candidate solutions, in evolutionary algorithms for a variety
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of problems, including machine scheduling, vehicle routing, and the quadratic as-
signment problem [2], constrained facility layout problems [4], deceptive ordering
problems [5] [6], cellular manufacturing [7], and job shop scheduling [8].

Rothlauf, Goldberg, and Heinzl [9] [3, pp.178–190] described a random-key
representation of spanning trees called Network Random Keys, or NetKeys. Gi-
ven a connected, undirected graph G, NetKeys associates keys with G’s edges.
Sorting the keys yields a permutation of the edges, and a decoding algorithm
based on Kruskal’s algorithm [10] examines the edges in their permuted order to
build a spanning tree on G. The decoder can enforce constraints on the spanning
tree, such as a bound on its vertices’ degrees. If G has n vertices, it may have
up to

(
n
2

)
edges, so the size of each NetKeys genotype is O(n2), and the time

required to sort it—and impose an ordering on G’s edges—is O(n2 log n).
Permutations of a graph’s vertices can also represent spanning trees, via a

decoder based on Prim’s algorithm [11], and these permutations can in turn
be represented by random keys. Each of these codings offers advantages and
disadvantages of implementation; does either provide better performance?

Permutations of vertices and random keys, with operators appropriate to
them, were implemented in generational genetic algorithms and compared on
25 instances of the bounded-diameter minimum spanning tree problem, which
Section 2 describes. These trials revealed no significant or consistent differences
in the performance of the two codings. This suggests that either coding may be
used, at the programmer’s convenience, in evolutionary algorithms for problems
involving constrained spanning trees.

Following the description of the bounded-diameter minimum spanning tree
problem, this paper presents permutation and random-key codings of bounded-
diameter spanning trees, genetic algorithms that use them, and the comparisons
of the two genetic algorithms.

2 The Bounded-Diameter MST Problem

In a tree, the eccentricity of a vertex v is the maximum number of edges on
any path from v to another vertex. The diameter of a tree is the maximum
eccentricity of its vertices, thus the maximum number of edges along any path
in it. The center of a tree is the single vertex (if its diameter is even) or the two
vertices (if odd) of minimum eccentricity, and a vertex’s depth is the number of
edges on the path from it to the tree’s center.

Given a connected, undirected graph G on n vertices and a bound D, a
bounded-diameter spanning tree (BDST) is a spanning tree on G with diameter
no greater than D. Figure 1 shows two BDSTs on n = 20 vertices. One has even
diameter; the vertex v is its center. The other has odd diameter; the vertices v
and w together form its center.

If weights are associated with G’s edges, then a bounded-diameter minimum
spanning tree (BDMST) is a BDST on G of minimum total weight. The search
for such a tree is the bounded-diameter minimum spanning tree problem. This
problem is NP-hard for 4 ≤ D < n − 1 [12, p.206], though it is solvable in
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(a)

v

(b)

v

w

Fig. 1. (a) A tree on 20 vertices with diameter 4; v is its center. (b) A tree on the
same vertices with diameter 5; v and w together form its center

polynomial time if D ≤ 3 or if all the edge weights in G are equal. The bounded-
diameter minimum spanning tree problem has applications in a variety of areas,
including communications network design [13], mutual exclusion in distributed
systems [14], and data compression [15],

Abdalla, Deo, and Gupta [16] [17] described two heuristics for this problem,
one of which imitates Prim’s algorithm [11] but eschews edges whose inclusion
would violate the diameter bound. It maintains the lengths of all paths and the
eccentricities of all vertices in the growing BDST, and it requires time that is
O(n3).

More recently, Raidl and Julstrom [18] described a Prim-based, greedy heuri-
stic that builds a BDST beginning at its center. It avoids edges that would place
vertices at depths greater than �D/2�—that is, more than �D/2� edges from the
center—so that no two vertices are more than D edges apart. This algorithm
requires time that is O(n2), and it underlies the decoding algorithms of the two
codings of BDSTs that the next section describes.

3 Encoding Bounded-Diameter Spanning Trees

Spanning trees can be encoded for evolutionary search in a variety of ways [19]
[3, pp.128–197], most of which can be adapted to represent bounded-diameter
spanning trees. Our focus, however, is particularly on permutations and random
keys as codings of BDSTs. This section describes these codings and operators
appropriate to them.

3.1 With Permutations

Julstrom and Raidl [20] encoded bounded-diameter spanning trees on a graph
G as permutations of G’s vertices. Evaluating a permutation requires making
explicit the tree it represents; the following decoder is based on Prim’s algorithm.

Let c[·] be a permutation of G’s vertices. The first vertex (if the diameter
bound D is even) or the first two vertices (if D is odd) that c[·] lists form the
center of c[·]’s tree. The decoder appends the remaining vertices to the tree in
their order in c[·]. The depth of each new vertex is one greater than the depth
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of the vertex in the tree to which it is joined, so each new vertex is attached by
its lowest-weight edge to a vertex of degree less than �D/2�. Then no vertex has
depth greater than �D/2�, and the tree’s diameter does not exceed D.

Figure 2 summarizes the permutation decoding algorithm. A vertex’s depth
is fixed when it joins the tree and does not change thereafter, but as in Prim’s
algorithm, the nearest-connection information for the remaining unconnected
vertices must be updated after each vertex joins the tree, so the decoder’s time
is O(n2). The space a permutation requires is O(n).

T ← ∅
vo ← c[0]
U ← V − {vo}
C ← {vo}
depth[vo] ← 0
if D is odd

v1 ← c[1]
T ← {(vo, v1)}
U ← U − {v1}
C ← C ∪ {v1}
depth[v1] ← 0

while U �= ∅ do
u← the next vertex in c[·]
v ← the vertex in C nearest u
T ← T ∪ {(u, v)}
U ← U − {u}
depth[u] ← depth[v] +1
if depth[u] < �D/2�

C ← C ∪ {u}
return T

Fig. 2. The decoding algorithm for the permutation coding of bounded-diameter span-
ning trees. c[·] is the permutation, T is the tree’s edge set, V is the graph’s vertex set,
U is the set of unconnected vertices, and C is the set of connected vertices to which a
new edge may be connected without violating the diameter bound

A random permutation can be generated in time that is O(n). An appropriate
crossover operator is Reeves’ C1 [21] (also described, with different names, by
Smith [22] and Prosser [23]). C1 chooses a crossover point at random and copies
one parent into the offspring up to that point. It then copies the remaining values
in order from the second parent into the offspring’s remaining positions. This
operator usually preserves the center of the first parent. Its time is O(n).

A mutation operator swaps the vertices at two random positions in the parent
genotype, thus exchanging the times at which the decoder includes those vertices



1276 B.A. Julstrom

in the tree. Identifying the two positions and exchanging their contents require
only constant time, but copying the parent genotype into the offspring is O(n).

3.2 With Random Keys

To use random keys to represent bounded-diameter spanning trees, concatenate
the discussions of random keys and permutations of vertices. In particular, let
G be a graph with n vertices and let D be the diameter bound. A genotype is
a sequence of n random keys in [0.0, 1.0], one for each vertex in G. To identify
the BDST a genotype represents, sort the keys to obtain a permutation of G’s
vertices. Then, as in Section 3.1, the Prim-based decoder builds the tree with
diameter no more than D corresponding to the permutation.

The time required to sort a random-key genotype is O(n log n) and the time
to identify the tree from the resulting permutation is O(n2). Thus the time of
the entire decoding process is O(n2). The space a genotype requires is again
O(n).

With random keys, appropriate operators are two-point crossover and
position-by-position mutation: with a small probability, each value from the pa-
rent genotype is replaced by a new random value in [0.0, 1.0]. These operators’
times are linear in n.

3.3 Two Genetic Algorithms

The permutation and random-key codings of bounded-diameter spanning trees
were implemented in two genetic algorithms for the BDMST problem. The GAs
are generational and initialize their populations with random genotypes, and
they select parents in tournaments. Both generate new genotypes from those pa-
rents using either crossover or mutation, never both; each offspring is generated
by exactly one operator. Both GAs run through fixed numbers of generations.

4 Comparisons

The permutation-coded GA and the random-key-coded GA were compared on 25
Euclidean instances of the bounded-diameter minimum spanning tree problem,
five instances each of n = 50, 70, 100, 250, and 500 points. The instances are
found in Beasley’s OR-Library1 [24], where they are listed as instances of the
Euclidean Steiner problem. The tests used the first five instances of each size;
the library contains fifteen instances of each size (and others).

Each instance consists of random points in the unit square. The points are
treated as the vertices of complete graphs whose edge weights are the Euclidean
distances between the points. When n = 50, the diameter bound D was set to
5; when n = 70, D = 7; when n = 100, D = 10; when n = 250, D = 15, and
when n = 500, D = 20.
1 mscmga.ms.ic.ac.uk/info.html
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The two EAs’ common parameters were set identically. For a BDMST pro-
blem instance with n points, their population sizes were 20

√
n and their numbers

of generations in each run were 50
√

n, so that a run always generated 1000n new
genotypes. Both algorithms selected parent genotypes in tournaments of size two,
without replacement, and a tournament’s winner always became a parent. Both
applied crossover with probability 60%, and mutation, therefore, with proba-
bility 40%. The random-key-coded GA mutated each position in its genotypes
with probability 3/n. Table 1 lists the population sizes and run lengths for the
two GAs and the mutation probabilities in the random-key-coded GA.

Table 1. Population sizes and numbers of generations per run of the two genetic
algorithms, and the probability of mutating one symbol in the random-key-coded GA.
On a problem instance of n vertices, the total number of new genotypes is always 1000n,
with the algorithms’ population sizes set to 20

√
n and their numbers of generations to

50
√

n. In the random-key-coded GA, P[mu] = 3/n

n PopSize Generations P[mu]
50 141 353 0.060
70 167 418 0.043

100 200 500 0.030
250 316 790 0.012
500 447 1118 0.006

On each instance, both EAs were run 50 independent times. Table 2 summa-
rizes the results of these trials. For each instance, the table lists the number of
points n and the diameter bound D. For each GA and each instance, it lists the
length of the shortest bounded-diameter tree found and the mean and standard
deviation of the 50 trials’ tree lengths. The smaller best values and the smaller
mean values for each instance are bold.

Because of the additional level of indirection imposed by random keys, we
might expect the GA using them to be less effective than the permutation-coded
GA, but this is not the case. There are no significant or consistent differences
between the performance of the permutation-coded GA and that of the random-
key-coded GA on these BDMST problem instances. For example, the two GAs
return equal best tree lengths on four of the five instances with n = 50 ver-
tices, and on the remaining instance the values differ by less than 0.15%. The
permutation-coded GA returns the shorter mean tree lengths on three instances,
and the random-key-coded GA on two.

Similarly, on the instances with n = 100 and D = 10, the permutation-
coded GA identifies the shortest tree twice and returns the shorter mean tree
length twice; the random-key-coded GA wins the remaining three contests of
each kind. The results on the instances of other sizes are similar. No consistent
winner emerges, and the differences between the best and mean tree lengths are
always small compared to the respective standard deviations.
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Table 2. For each set of 50 trials of the permutation-coded GA and the random-key-
coded GA on each of the 25 BDMST problem instances: the length of the shortest tree
found and the mean and standard deviation of the 50 tree lengths. The smaller best
and mean values are bold.

Instance Permutation-Coded GA Random-Key-Coded GA
n D num. best mean stddev best mean stddev
50 5 1 7.602 7.838 0.19 7.613 7.853 0.13

2 7.750 7.895 0.12 7.750 7.866 0.10
3 7.251 7.477 0.15 7.251 7.487 0.14
4 6.616 6.680 0.09 6.616 6.706 0.10
5 7.388 7.498 0.12 7.388 7.489 0.07

70 7 1 7.236 7.361 0.07 7.234 7.358 0.06
2 7.122 7.229 0.08 7.122 7.247 0.07
3 6.987 7.197 0.14 7.009 7.151 0.10
4 7.521 7.646 0.10 7.521 7.643 0.07
5 7.269 7.359 0.08 7.270 7.343 0.05

100 10 1 7.818 7.919 0.07 7.831 7.919 0.05
2 7.873 8.017 0.08 7.853 8.043 0.09
3 7.990 8.139 0.08 7.982 8.137 0.09
4 8.009 8.143 0.07 7.996 8.122 0.06
5 8.193 8.335 0.08 8.198 8.313 0.08

250 15 1 12.440 12.602 0.08 12.448 12.580 0.08
2 12.237 12.432 0.10 12.222 12.393 0.10
3 12.117 12.282 0.08 12.178 12.315 0.07
4 12.572 12.824 0.11 12.632 12.802 0.07
5 12.358 12.608 0.12 12.382 12.623 0.10

500 20 1 17.216 17.476 0.10 17.156 17.429 0.10
2 17.085 17.311 0.11 17.097 17.291 0.10
3 17.173 17.449 0.11 17.164 17.369 0.11
4 17.215 17.484 0.13 17.266 17.432 0.09
5 16.939 17.137 0.11 16.872 17.092 0.11

From these results we conclude that, in these genetic algorithms, the perfor-
mances offered by the permutation coding and by the random-key coding are
indistinguishable. More generally, these results suggest that either coding may be
used to good effect on problems, like the BDMST problem, where a Prim-based
decoding algorithm identifies the encoded spanning trees.

5 Conclusion

Given a connected, weighted, undirected graph G and a bound D, the bounded-
diameter minimum spanning tree problem seeks a spanning tree on G of mini-
mum weight among the trees with diameter no greater than D. Two indirect
evolutionary codings of valid spanning trees represent BDSTs in genetic algo-
rithms for this problem. Permutations of G’s vertices encode trees via a de-
coding algorithm based on Prim’s algorithm. Random keys are floating-point
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(a) (b)

Fig. 3. On the first BDMST problem instance with n = 250 vertices and diameter
bound D = 15, (a) the shortest tree found by the permutation-coded genetic algorithm;
it has length 12.440; and (b) the shortest tree found by the random-key-coded GA; it
has length 12.448

values associated with G’s vertices; sorting a genotype of random keys yields a
permutation of the vertices, which in turn represents a BDST.

Each coding has advantages and disadvantages. Permutations are more di-
rect but require specialized variation operators. Random keys can be manipu-
lated with traditional—and simple—operators, but decoding them requires the
additional step of sorting. Both, however, always represent only valid trees; their
decoding algorithms enforce the diameter bound. Also, both are more efficient
in space and time than Network Random Keys, which associate floating-point
values with the underlying graph’s edges.

Implementing the two codings in generational genetic algorithms for the
BDMST problem and comparing them on a range of Euclidean instances revea-
led no significant or consistent differences in the performance they offer. Either
coding may be used at their authors’ convenience in evolutionary algorithms
for constrained spanning tree problems that, like the BDMST problem, admit a
coding via permutations.

It is undoubtedly possible to improve the absolute performance of the genetic
algorithms described here. The permutation-coded GA might benefit from the
replacement of the C1 crossover operator with another of the many crossovers
that have been described for permutations. The random-key-coded GA’s geno-
types might be augmented with ES-style mutation parameters, as Schindler [25]
has suggested. Both might be more effective with different sets of parameter
values like population size and operator probabilities.
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